MCC-134, a single pharmacophore, opens surface ATP-sensitive potassium channels, blocks mitochondrial ATP-sensitive potassium channels, and suppresses preconditioning.

نویسندگان

  • Norihito Sasaki
  • Mitsushige Murata
  • Yiru Guo
  • Su-Hyun Jo
  • Andreas Ohler
  • Masaharu Akao
  • Brian O'Rourke
  • Rui-Ping Xiao
  • Roberto Bolli
  • Eduardo Marbán
چکیده

BACKGROUND MCC-134 (1-[4-(H-imidazol-1-yl)benzoyl]-N-methylcyclobutane-carbothioamide), a newly developed analog of aprikalim, opens surface smooth muscle-type ATP-sensitive potassium (K(ATP)) channels but inhibits pancreatic K(ATP) channels. However, the effects of MCC-134 on cardiac surface K(ATP) channels and mitochondrial K(ATP) (mitoK(ATP)) channels are unknown. A mixed agonist/blocker with differential effects on the two channel types would help to clarify the role of K(ATP) channels in cardioprotection. METHODS AND RESULTS To index mitoK(ATP) channels, we measured mitochondrial flavoprotein fluorescence in rabbit ventricular myocytes. MCC-134 alone had little effect on basal flavoprotein fluorescence. However, MCC-134 inhibited diazoxide-induced flavoprotein oxidation in a dose-dependent manner (EC(50)=27 micro mol/L). When ATP was included in the pipette solution, MCC-134 slowly activated surface K(ATP) currents with some delay (>10 minutes). These results indicate that MCC-134 is a mitoK(ATP) channel inhibitor and a surface K(ATP) channel opener in native cardiac cells. In cell-pelleting ischemia assays, coapplication of MCC-134 with diazoxide abolished the cardioprotective effect of diazoxide, whereas MCC-134 alone did not alter cell death. These results were reproducible in both rabbit and mouse myocytes. MCC-134 also attenuated the effect of ischemic preconditioning against myocardial infarction in mice, consistent with the results of cell-pelleting ischemia assays. CONCLUSIONS A single drug, MCC-134, opens surface K(ATP) channels but blocks mitoK(ATP) channels; the fact that this drug inhibits preconditioning reaffirms the primacy of mitoK(ATP) rather than surface K(ATP), channels in the mechanism of cardioprotection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-nociceptive effect of cimetidine in mice: the role of ATP-sensitive potassium channels

Recent studies have shown that intracerebroventricular administration of cimetidine (CIM) induces anti-nociceptive and anti–inflammatory effects in rats. However, the underlying mechanism of CIM effect has not been determined yet. This study was planned to determine the anti-nociceptive effect of CIM (50 mg/kg, i.p.) in male mice (25-30 g, n = 80) using tail flick test. Also, the role of ATP-se...

متن کامل

Biophysical and electropharmacological properties of single mitoKATP channel in rat brain mitochondrial inner membrane

Introduction: Different ATP-sensitive potassium channels have been detected in the mitochondrial inner membrane of cells. They are suggested to be involved in cell processes including cell protection. Here, we characterized the biophysical and electropharmacological properties of a KATP channel in the brain mitochondrial inner membranes. Methods: After removing and homogenizing the rat brain...

متن کامل

MCC-134, a blocker of mitochondrial and opener of sarcolemmal ATP-sensitive K+ channels, abrogates cardioprotective effects of chronic hypoxia.

We examined the effect of MCC-134, a novel inhibitor of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels and activator of sarcolemmal ATP-sensitive K(+) (sarcK(ATP)) channels, on cardioprotection conferred by adaptation to chronic hypoxia. Adult male Wistar rats were exposed to intermittent hypobaric hypoxia (7000 m, 8 h/day, 5-6 weeks) and susceptibility of their hearts to ventricular ar...

متن کامل

Anti-nociceptive effect of cimetidine in mice: the role of ATP-sensitive potassium channels

Recent studies have shown that intracerebroventricular administration of cimetidine (CIM) induces anti-nociceptive and anti–inflammatory effects in rats. However, the underlying mechanism of CIM effect has not been determined yet. This study was planned to determine the anti-nociceptive effect of CIM (50 mg/kg, i.p.) in male mice (25-30 g, n = 80) using tail flick test. Also, the role of ATP-se...

متن کامل

ATP-sensitive Potassium Channels and L-type Calcium Channels are Involved in Morphine-induced Hyperalgesia after Nociceptive Sensitization in Mice

Introduction: We investigated the role of ATP-sensitive potassium channels and L-type calcium channels in morphine-induced hyperalgesia after nociceptive sensitization. Methods: We used a hotplate apparatus to assess pain behavior in male NMRI mice. Nociceptive sensitization was induced by three days injection of morphine and five days of drug free. On day 9 of the schedule, pain behavior te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 107 8  شماره 

صفحات  -

تاریخ انتشار 2003